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AN APPLICATION OF NONLINEAR ESTIMATION

ABSTRACT

‘'his paper describes a nonlinear model that has application for forecast-
ing growth phenomenon. The parameters for the model are e¢stimated from current
data rather than historic data. Two examples are presented utilizing crop
characteristic data. Analyses of the residuals from the estimated model clearly
indicate the violation of model assumptions. A procedure for transforming data
to meet model assumptions is demonstrated. Also, a method to improve the
estimating ability of the model by double sampling is shown.

INTRODUCTION

The increased dependence of world markets on United States grain produc-
tion has augmented the interest In preharvest production forecasts. Farmers,
consumers, grain exporters and government policy officials rely heavily upon
these forecasts.

A grain production forecast consists of two components: (1) number of
acres to be harvested and (2) yield per acre. Acreages for harvest are rela-
tively stable from year to year. Also, farmers' plans to harvest a certain
number of acres seldom change significantly during a growing season, except for
isolated instances of total crop failure. Yield per acre, however, is consid-
earbly more difficult to forecast, because yields vary substantially from
year to year. Also, early season forecasts can be invalidated by sudden changes
in growing conditions. Because of the complex nature of yield, current method-
ology does not always perform as well as desired. This paper presents an

alternative approach to forecasting crop yield using nonlinear estimation.




TRADITIONAL APPROACH

The traditional approach to forecasting crop yields has consisted of two
methods: subjective and objective. Both methods rely on what may be called
"between~-year” models.

The subjective method has consisted of surveying a nonprobabilistic sample
of farm operators. Each farm operator is asked to report what he expects his
crop will yield per acre. The results are summarized and an average yield is
computed. Previous years' (historic) data are used in a linear regression
model to regress estimated yield at harvest against preharvest forecasts by
farmers to allow for farmers' tendency to overstate or understate potential
yield.

There are several limitations to the subjective method. First, although
farmers can provide a reasonable forecast of their yield, the forecast is sub-
jective and therefore susceptible to the farmers' bias. Second, farmers'
ability to judge yield potential is probably not independent of crop gquality.
That is, farmers' ability to forecast yield is probably not the same in good
crop years as it is in bad crop years. Finally, a predetermined number of
years' data are required to estimate a relationship between farmers' preharvest
yield forecasts and harvested yields. Therefore, a current year forecast re-
quires the use of historic data.

In the objective method, data are collected from randomly selected field
plots. During the growing season, plant counts and fruit measurements are
made for each plot. The estimated yield at harvest for each plot is regressed
against the preharvest plant counts and fruit measurements. Historic data are
used to estimate the parameters of a linear model for each of éeveral maturity

catepories. Current year counts and measurements are then used in conjunction



with this model to forecast current year yield at harvest during the growing
season.

It is necessary to dcetcermine how many years' data to use in estimating
the parameters of the model. Tn practice, the previous threce ycars' data are
used. This means that cach year, one year's historic data are excluded, the
most recent historic yvear's data are included, and new estimates for the
parameters are computed. Regardless of how many or which years are used to
estimate the model's pérameters, it is assumed that current year data will
conform to that model. If this assumption is violated, the objective method
will not provide reliable preharvest yield forecasts.

ALTERNATIVE APPROACH

Limitations of the traditional approach have prompted considerable inter-
est in the possibility of using only current year data from randomly selected
field plots as a basis for developing crop yleld forecasts during the growing
season. Therefore, efforts have been directed toward testing a "within-year"
forecasting model for which the parameters can be estimated from current
season data only.

A within~year model would have the advantage of providing yield forecasts
without the dependence on historic data to‘estimate.the parameters. Therefore,
a within~year model would reflect unique characteristics of the year for which
the forecast was desired.

A within-year model could be a valuable supplement to a between-~year
model. Supplemental information from a within-year model may improve crop
forecasts for atypical years in which growing conditions differ g;eatly from
the three previous years that were used to generate the parameter values in a

between-year model.




In additlon to providing supplemental information to the present yicld
forecasting system, a within-year model could be very useful in developing a
forecasting model for crops not in the present crop yield forecasting system.

A within-year model could be developed in a shorter time period, since histor-
ic data would be unnecessary.

Various within-year models have been examined to determine if biological
laws relate corn or spring wheat growth, in terms of dry kernel weight, to
time scales closely related to initial kermel formation. Results demonstrate
that a within~-year model, known as the logistic growth model, describes thz2
process by which dry kernel weight accumulates in corn or spring wheat.l/ 2/ 3/

The objectives of this paper are to:

(1) Discuss the form of the logistic growth model.

(2) Describe a method for estimating the parameters of a nonlinear
model, such as the logistic growth model.

(3) Illustrate the use of the logistic growth model as a forecasting
methodology for corn and spring wheat.

(4) Describe two variations of this model, which allow for relaxing
certain assumptions concerning the residuals.

(5) Explain the use of double sampling to refine the dependent
variable.

LOGISTIC GROWTH MODEL

The logistic growth model is a nonlinear model that uses incipient data
for the independent and dependent variables to estimate values for the param-
eters. The model then can be used to forecast the dependent variable for a

particular value of the independent variable. The form of the model is:



y; = +u; 1i=1,2, ..., n
a, B and p = parameters

«a>0,B8>0,0<p<1

ui = disturbance term
ti = independent variable
yi = dependent variable

In applying this model to dry kernel weight accumulation for an individ-
ual stalk of corn or spring wheat, the hypothesis is that accumulation begins
slowly at first, increases at an increasing rate for a period of time and then
increases at a decreasing rate until a maximum (asymptotic) value is attained.
This asymptotic value represents the dry kernel weight per stalk at harvest.
The point in the phenological development of a stalk coinciding with time
equal to zero should‘approximate as closely as possible the initial stages of
kernel development such as silk emergence in corn or flowering in wheat.

The logistic growth model is shown graphically below.
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ESTIMATION

The logistic growth model is intrinsically nonlinear in the unknown parame-
ters o, B and p. Therefore, the method of least squares is not directly applic-
able for fitting this model to sample data.

One method for estimating the parameters of a nonlinear model is the

4/

linearization (or Taylor series) method. — The linearization method is a

widely used method for computing monlinear least square estimators. In general,
the form of the model is:

yi = f (Ei, 9) + ui sy i=1,..., n

provided that Yy is the value of the dependent variable, Ki' = (Xil’ XiZ’ “e ey

xik) is the vector of k independent variables, u, is the disturbance term for

the LEE observation and @~ = (Ol, 62,..., Op) is the vector of p unknown param-
eters to be estimated.

Beginning with an initial estimate of the parameters, QO = (010, 920, .e-

. Opo), the procedure involves carrying out a Taylor series expansion of

f (xi, ©) about the point and disregarding the terms beyond the first de-

%
rivative, Then, when O is close to 90, yi is approximated by:

y, = £

(T F &y, 9 + 3=l [——g——| (0, - 0,) +u 3 i=1,..,

O) i

858,

All information available from theory and previous survey results con-
cerning the population being sampled would be used in estimating initial values
for the parameters.

This cquation expressed in matrix notation is:



Y - fo) =25y, * u
provided that '

' —
F Yy - £y, 8p) // % - %10 /“1\
¥y = £y &) i %27 % “2 |

| )

- = uT o
\Yn‘f(_}_(n,_O;O) \Op—epo un/

9=

9,
The parameter vector, 11, can then be estimated by applying ordinary
least squares to obtain

-~ . _l "
Y, = (25 Z,) Zy (X - £5)
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provided that

%11 ~ %10
] %21 = %20
Y, < .
epl - QPO ]
The vertor,i ,will minimize the error sum of squares,
- af(X,, Q) =
n P -1° -
$S (y,) = % [y-fq..e):} -z —2 | (. -0
1 i=1 i i’ 0 j=1 30j J jo

with respect to the (Gj - Ojo) s i=1,..., p-
Using Ql = (911, 621, ..

parameter vector ©7= (Gl, 0

- epl) as a revised estimate of the unknown
2, 1,

in the same role as the Gjo ; J =1, ..., p in the previous equations. The
process of deriving the least squares solution is repeated, and another re-
vised estimate Q2 = (012, 022, cens OpZ) is obtained.

This iterative process is continued until the solution converges. The

criterion for convergence might be

¢] -0
j (k+1 jk
Pl < 6 5 3=1, .o, pe
| ik
or, alternatively,
58 Qenn)) ~ 550y
SS(y ) < )

| e 2

in successive iterations k and (k+1), where 61 or 62 would be predetermined

tolerance values.
Note that with the terminating (k+1)th iterations the SS(1k+l) will be
the minimum attainable error sum of squares to the accuracy level imposcd by

the termination criterion chosen. One should be aware of the effects of this

8

ey Gp), the Gj s =1, 2, ..., p can be placed



limitation. For example, even though the error term, u, of the nonlinear
model is assumed to be normally distributed, é, is not normally distributed,
52 = Ss(ik+1)/(n-p) is not an unbiased estimate of 02, and confidence intervals
constructed for population parameters are only approximate. Of course, the
more closely the sample data fit the hypothesized model and the smaller the
termination criterion, the better the approximation will be. Preliminary
simulation using data collected for corn was analyzed to determine the distri-
bution of each parameter in the logistic growth model. A test designed by
Wilk and Shapiro (the W test)él failed to reject at the .05 signficance level
the null hypothesis that estimates of each parameter were normally distributed.
Therefore, although é is not normally distributed, simulation has exemplified
that it may be very close to being normally distributed.

The results to be described now and the experience of other peopleq/
indicate that in practice the linearization method provides reasonable estimates.

APPLICATION

As previously mentionéd, the logistic growth model has been tested as a
forecasting methodology for corn and spring wheat. Data were collected from
plots in 10 Iowa corn fields and 3 North Dakota spring wheat fields.

For corn, the independent time variable was the number of days from silk
emergence to the time the corn plant was sampled. The dependent variable was
the mean dry kernel weight (grams) of all ears per plant for all plants with
the same associated value of time and drawn from the same sample field. The
period of time since silk emergence for a plant was based on the time of the
primary ear. 1t was assumed the residuals in this model are independently

distributed with mean zero and a constant variance, 03. That is,




E(U) =0 and

. o o2
E(UU) =02 T

T oty i=1,..., n, (1)
o + B8(p) i

The model, yi =
was fitted to sample data available through August 15, September 1, September
15, October 1, October 15, and the end of the growing season. This increment-
ing of data was done to indicate how early in the growing season the parameters
of the model could be estimated and how these estimates changed as additional
information became available. To evaluate the estimated model, the asymptotic
value for each of the six calendar date cutoffs was compared with an estimate
of the mean dry grain weight per plant at harvest for the 10 sample fields
combined.

The nonlinear least squares option of the Biomedical Computer Programs
{(BMD) packagel/ was used to estimate the parameters of the model for each of

the six cutoffs. This computer program uses a variation of the linearization

method. Table 1 shows the estimated value for each parameter, the estimated

Table 1
. o .
cut - R R ;A . ;A . 8* A lim Yy é of est'ed
of{ n @ B p a/a  “B/B plo t, > V. wt.
all

obs. 278 .0061541 .15655 .91866 3.59 34.36 0.98 162.49 106.3
10/15 256 .0058769 .15263 .92037 3.85 31.85 0.90 170.16 111.4
10/1 197 .0053225 .16184 .91977 5.66 29.67 0.90 187.88 123.0
9/15 128 .0063958 ,40740 .88626 6.39 38.86 1.34 156.35 102.3
9/1 70 .0063116 .69776 .86809 15.59 49.90 1.91  158.44 103.7

8/15 19 .016119 14.127 .74074 18.90 134.18 6.96 62.04 40.6
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relative standard error for each estimated parameter, the estimated asymptotic
value and the estimated asymptotic value as a percent of the estimated grain
weight per plant at harvest for each of the six cutoffs. These results show
considerable variability in the asymptotic value among the six cutoffs. Also,
these data indicate little success may be expected in estimating a reliable
model based only on data collected up through mid-August. The plot on page 12
(Figure 1) shows the data being fitteq and the estimated model for the QOctober
1 forecast. |

The logistic growth model was also fitted to data collected for spring
wheat to determine if dry kernel weight accumulation follows the growth phe-
nomenon described by this model. The dependent variable, yy+ was defined as
the mean dry kernel weight in grams for stalks from the same sample field with
the same value of the independent variable. The independent variable was the
period of time in days since a phenological event occurred until the stalk was
sampled. Phenological events observed were flowering, head emergence and head
swelling. Table 2 shows the number of observations, the estimated value and
relative standard error of each parameter and the estimated value of the depen-

dent variable at harvest for each phenological event using all the data.

Table 2
Phenological n ! N ~ ' A ;. - ;A N ! ;4 A 1 Tim Yy
Event B p a/a B/8 p/p t, >
‘ p A % %
Flowering 40 1.7016 35.125 .80761 7.14 57.68 4.52 .588
Head Emergence 63 1.7253 184.66 .78174 6.01 80.75 4.56 .580
_Head Swelling 66 1.6593 165.25 .8051 6.88 79.36 4.09 .603

The data fit for the phenological event, flowering, is shown in Figure 2 on

page 13. These results indicate that spring wheat does follow the growth

11
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behavior described by the logistic growth model. Future research will inves-
tigate the use of this model as a forecasting technique for spring wheat.

HETEROSCEDASITY

After fitting the logistic growth model to the six subsets of corn data
and all data for spring wheat, an attempt was made to evaluate how well the
underlying assumptions coécerning the'tesidualg had been met. An examination
of the plots showing the fitted model and data points for each cutoff date
for corn and all data for sprinpg wheat indicated that theremay be a statisti-
cally signilicant relatienship between the variatioﬁ in the residuals and the
independent time variable. FPlots showed that the estimated residuals become
larger for larger values of time. In other words, the data may be violating

the assumption

2 2
E (ui) Gu

for all i. This condition is commonly referred to as heteroscedasity.
To p&tsue:thiy possibility, a method suggested by Glejser was used.§/

It is assumed that each vesidual, u., can be expressed as

i&’

vy = vi f(ti); i=1,..., n

provided that ] is8 a random variable with
g (V) = 0 and

w2

E (VV) a, In.
Also, it is assumed that the form of the function, f. is known. but at least
one of its parameters is unknown. 1t then follows that instead of the original
assumption that

€ (UU) =021,

- u'n

now it is assumed thar

Y w2
E(UU) =028

14



provided that

/[f (tl)]z Qestesesenenncensannnnnnnnansl

{ o [ “2’]2 0
Q= 1 : ‘ ‘e, :
; : ;
\ : !..-.. :
\ : '-c'.. ) 2
\ 0 Ocennnnnennnn U fE (2 )] ]

It can be shown that if the assumption of heteroscedasity holds true,
using model (1) will give less efficient estimates of the parameters. That
is, the estimated standard errors of the parameters will be unnecessarily
large. Applying the method of generalized least squares at each iteration

of the linearization procedure, an estimte of Y41 would be given by

- - -1 -1 .. -1
Yar T G 22 Tz e @ g
Alternatively, the same estimate of Yi+1 would be obtained if the model
—— = 1 1 + 1 u,: i=1,..., n (2)

Yy 15

£ (t) £(e) a+B()"L £ ()

were fitted to the sample data using ordinary least squares at each iteration.
Either procedure can be used with BMD. Note that the residuals of model (2),

u
1 =v,ii=1,..., 0
f (ti)

do have the desired characteristic of being independently distributed with
mean zero and a constant variance, 03.

Since neither the function, f, nor its parameters are known, they must
be estimated.  Corn data will be used to illustrate the fit to the logistic
growth model based upon the heteroscedastic-error adjustmént. Following the
procedure outlined by Glejser, the absolute value of the estimated residuals

obtained from fitting model (1), |u |: i=1,..., n were regressed on an

i
15



estimated function of time. An examinction of plots of the ahsolute value of
the residuals against time suggested the function

ful=f @) =rg+rr it +e 51=1,..,n

Since the estimated value of T, was not significantly different from zero for
any of the six cutoff dates, the function

fui1 = f (ti) =ttt te 3i=1,...,n

‘was used. Estimates of 1 were significant for all cutoffs. The results of

fitcing model (2) using the estimates for f (t) are shown in 'fable 3.

Table 3
cut R R N ;A . GA A g lim Yy %Z of est'ed
off n a B al/a B/B plp b, »® hv. we.
T T (%) (%) @y Tt T
ali
obs. 278 .0068499 .50744 .88328 2.99 23,22 0.79 145.99 95.5
10/15 256 .0066370 .47529 .88618 3.22 22.26 0.76 150. 67 98.6

10/1 197 .0063319 .50529 .88455 3.87  22.03 0.76 157.93 103.4

9/15 128 .0070626 .76550 .86517 5.32 25.63 1.00 141.59 92.7
9/1 70 .0069929 .95989 .85613 12.07 29.70 1.33 143.00 93.6
8/15 19 .017680 28.315 .71327 16.90 128.11 6.89 56.56 37.0

A comparison of Tables 1 and 3 shows the estimated relative error of the
estinmated parameters is now smaller, as expected. Thefasymptotic values of
the cstimated heteroscedastic-error model -ate at a somewhat tower 1evei than
those of model (1). Perhaps the most attractive aspect of the results from
model (2) is that the asymptotic v4lues are 1essrvariab1e among the six cutoffs.
Note the October 1 walue fs suhsﬁantiailyﬂhbre‘in line with the other cutoffs

than before. The August 15 value is bedll far from being realistic.

3
’
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AUTOCORRELATION

Further examination of the plots from model (1) for the Iowa corn data
indicated the residuals may not be independently distributed. Specifically,
for small values of time most of the data points lie below the function, par-
ticularly for the last three cutoffs. This led to hypothesizing a third set of
assumptions concerning the residuals.

Assume the residuals in model (1), u,, can be expressed as

u, = v, f (ti); i=1,..., n

same as for the heteroscedastic-error model, but further assume the v, follow

a first-order autoregressive scheme:qf
v, = A Vi + Ei ’
provided that IAI < 1 and the €4 satisfy the following assumptions:
E (ei) =0
E (e, g,, )= 02 ' s=0
i Ti+s e

for all 1. It then follows that

E(UU) =o2Q
provided that

[f(cl)_]z E(e)) £(5,) A £(g)) £(cy) A2.... £(g) (¢t ) x“'q
fe) £(e) x [£e))]? £(t,) £(t) A £(e,) £(e ) A7
2 2 n-3

o f(tl).f(t3) 22 E(e) £(ey) A [f(t?j | £(t) £(e) A

) n-1 n-2 n-3 2

ECe)Ee) A1 £(e) £(e) AMTP E(e) £(e)™ e [ece))]

17



by
It can be shown that if the assumption of autocorrelation holds true, using
model (2) will underestimate the true sampling variance of the estimated param-
eters. As in the case of the heteroscédastic-error model, the method of
generalized least squares can be applied at each iteration of the linearization f
procedure and an estimate of Y41 obtained by

" P R R |
Yoo ™ G 87Z) T2 a7 - £) .

However, this approach camnot be used with BMD when gfl is not a diagonal
matrix. Therefore, a transformation matrix, T, must be utilized such that a
new model will be formulated that can be fitted by ordinary least squares and

that will have a scalar dispersion matrix. That is,

’

/1-12 o 00- ........ .0 0
f(tl)
-2 1 [ W 0 0
|
f(tl) f(tz)
L I = A 1. ...0 0
: B(e)) f(t3)""--..., ,
o R -2 I
; £(t ) f(e_ )
0 ' o 0-.-..-0- 000 _l
f(tn_l) ’
then

. me 2
B U)o T, -

18



The result of applying this transformation to the original model is:

1 a2 Y1 22 1 "1-22
yl - t + ul
f(tl) f(tl) a+8pl f(tl)
and

2 A 1 1 A 1

- —— y = —
i-1 t t
£(¢t)) £(ty ) ‘ f(e,)) a+B8pd f(t; ) a+Bod
ui A
+ ugy ; i=2, , n. (3)

f(ti) f(t1~1)

Having formulated an autocorrelated-error model that retains the assump-
tion of heteroscedasity, the next step was to test the data for each of the six
0
cutoff dates. The test used was the von Neumann ratiol—{ Table 4 shows the

results of this model for the cutoff dates that displayed autocorrelation. The

remaining three cutoff dates did not show autocorrelated residuals.

Table 4
cut . n . o A o on o~ lmy. 7 of est'ed
off n a 8 p a/a B/8 plp t » hv. wt.

¢3) (%) (%)
all
obs. 277 .0068072 .46516 .88591 3.71 29.25 1.00 146.90 96.1
10/15 255 .0065846 .43236 .88903 3.94 27.50 0.93 151.87 99 .4

10/1 196 .0062570 .45860 .88753 5.41 31.02 1.07 159.82 104.6

A comparison of Tables 3 and 4 shows the estimated relative error of the
estimated parameters for model (3) are larger than for model (2), as expected.
However, the asymptotic values changed only slightly.

DOUBLE SAMPLING
Obtaining data for the dependent variable, dry kernel weight, involves

mailing samples from the field to the laboratory and oven drying the kernels

19



from the samples. This is a tedious and somewhat expensive process. If a
plant characteristic, which can be cheaply obtained in the field, is highly
correlated with the dry kermel weight of the plant, a double sampling scheme
can be designed to increase the accuracy of the dependent variable. This
scheme involves obtaining data on fhe plant characteristic and dry kernel weighE ’
for the sample being sent to the laboratory and, in addition, collecting data
cheaply on the plant characteristic in the field on a larger sample. The cor-
relation between the plant characteristic and the dry kernel weight for the
samples sent to the laboratory are used with data-on the plant characteris-

tic from the larger sample in the field to refine by means of a linear regres-
sion estimator the mean dry kernel weight per plant so that a greater precentage
of the field is represented.

The form of the double sampling linear regression estimate is:

T =Yg+ B (- %)
provided that

Y = mean value for the dry kernel weight for the sample sent to
the laboratory

X "~ Dean value for the plant characteristic (auxiliary variable)
8 for the sample sent to the laboratory

Xr = mean value for the plant characteristic (auxiliary variable)
for samples sent to the laboratory and samples observed in
the field

81 = linear regression coefficient
YL = mean value for the dry kernel weight provided by the linear
regression estimate to represent a larger sample.
The auxiliary variables observed in the field for the corn project were
ear circumference, length and weight. The length of the wheat head and fertile
spikelet count were obtained in the spring wheat project. Results for the

spring wheat study are presented.

20



1he data were subsetteda 1nto aistinct time intervais to strengthen tne
corrclation. The dependent variable was refined by a linear regression estima-
tor for each time interval. Reflnements were made for each auxiliary varlable.
These refined values and the associated time since flowering in days were fitted

to the logistic growth model. Table 5 displays the results for each auxiliary

. variable used to more accurately provide the dependent variable.

Table 5

Auxiliary " " - ;‘ - ;“ " 8“ - lim vy

n a B ala | "B/8 p/p i
Variable y 7 ¥ t, >
Fertile 40 1.6988 31,07 .81607 7.73 56.17 4.42 .589
Spikelet
Count
Head Length 40 1.7317 34.46 .80722 7.17 58.12 4.61 .577

Comparison of the relative standard errors in Tables 2 and 5 for the
phenological event, flowering, indicates that the use of auxiliary variables to
refine the dependent variable did not improve the performance of the model.
This may be due to the fact that by subsetting the data into time intervals the
sample size in each linear regression estimate is small, and therefore, large
biases may exist in the esgimates. In future research, the sample sizes will
be much larger. Therefore, the ratio of the bias to the standard error should
be reduced.

CONCLUSTION

Results based on corn and spring wheat data indicate that a nonlinear
model such as the logistic growth model, may be beneficial as a forecasting
methodology for these crops. Plans are to continue this research for corn and
spring wheat and to test this forecasting methodology on other crops, such as

winter wheat, soybeans and cotton.
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3/ Jack Nealon, Within-Yearn Spring Wheat Growth Models, Statistical Reporting
Service, United States Department of Agriculture, Washington, D.C., 1976,

4/ N. R, Draper and H. Smith, Appfied Regression Analysis, New York: John
Wiley & Sons, Inc., 1966, Chapter 10.
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