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AN APPLICATION OF NONLINEAR ESTIMATION

ABSTRACT

This paper describes a nonlinear model that haR ;1ppli{'ationfor f(Jn>~'aflt-

lng growth phenomenon. The parameters for the model are <.'Rtlmatl'ufrolll ('urn.'nt

data rather than historic data. Two examples are presented utilizing crop

characteristic data. Analyses of the residuals from the estimated model clearly

indicate the violation of model assumptions. A procedure for transforming data

to meet model assumptions is demonstrated. Also, a method to improve the

estimating ability of the model by double sampling is shown.

INTRODUCTION

'~e increased dependence of world markets on United States grain produc-

tion has augmented the interest in preharvest production forecasts. Farmers.

consumers, grain exporters and government policy officials rely heavily upon

these forecasts.

A grain production forecast consists of two components: (1) number of

acres to be harvested and (2) yield per acre. Acreages for harvest are rela-

tively stable from year to year. Also, farmers' plans to harvest a certain

number of acres seldom change significantly during a growing season, except for

isolated instances of total crop failure. Yield per acre, however, is consid-

earbly more difficult to forecast, because yields vary substantially from

year to year. Also, early season forecasts can be invalidated by sudden changes

in growing conditions. Because of the complex nature of yield, current method-

ology does not always perform as well as desired. This paper presents an

alternative approach to forecasting crop yield using nonlinear estimation.
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TRADITIONAL APPROACH

The traditional approach to forecasting crop yields has consisted of two

methodH: subjective and objective. Both methods rely on what may be called

"between-year" modelB.

TIle subjective method has consisted of surveying a nonprobabiliHtic samp10

of farm operators. Each farm operator is asked to report what he expects his

crop will yield per acre. The results are summarized and an average yield is

computed. Previous yea,i[8'(historic) data are used in a linear regression

model to regress esti,mated yield at harvest against preharvest forecasts by

farmers to allow for farmers' tendency to overstate or understate potentlal

yield.

There are several limitations to the subjective method. First, althou~h

farmers can provide a reasonable forecast of their yield, the forecast is sub-

jective and therefore sUisceptible to the farmers' bias. Second, farmers'

ability to judge yield potential is probably not independent of crop quality.

That is, farmers' ability to forecast yield is probably not the same in good

crop years as it is in bad crop years. Finally, a predetermined number of

years' data are required to estimate a relationship between farmers' preharvest

yield forecasts and harvested yields. Therefore, a current year forecast re-

quires the use of historic data.

[n the objective method, data are collected from randomly selected field

plots. During the growing season. plant counts and fruit measurements are

made for each plot. The estimated yield at harvest for each plot is regressed

against the preharvest plant counts and fruit measurements. Historic data are

used to estimate the parameters of a linear model for each of several maturity

cate~ories. Current year counts and m~asurements are then used in conjunction
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with this model to forecast current year yield at harvest during the growing

season.

It is necessary to dctermine how many years' data to us~ in ~stimating

th(~ param(>ters of the model. Tn prac~ice. the prev lous three y(·ars· da t;1 an'

used. This means that each year, one year's historic data are excluded. the

most recent historic year's data are included, and new estimates for the

parameters are computed. Regardless of how many or which years are used to

estimate the model's parameters, it is assumed that current year data will

conform to that model. If this assumption is violated. the objective method

will not provide reliable preharvest yield forecasts.

ALTERNATIVE APPROACH

Limitations of the traditional approach have prompted considerable inter-

est in the possibility of using only current year data from randomly selected

field plots as a basis for developing crop yield forecasts during the growing

season. 'l1\erefore, efforts have been directed toward testing a "within-year"

forecasting model for Wllich the parameters can be estimated from current

season data only.

A within-year model would have the advantage of providing yield forecasts

without the dependence on historic data to estimate ,the parameters. Therefore,

a within-year model would reflect unique characteristics of the year for which

the forecast was desired.

A within-year model could be a valuable supplement to a between-year

mode l. Supplemental information from a within-year model may improve crop

forecasts for atypical years in which growing conditions differ greatly from

the three previous years that were used to generate the parameter values in a

between-year model.
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In addition to providing supplemental information to the present yll.'1d

[ore("al'ltinJ~fiystem, a within-year model could be very useful Ln ul:'veloptnp,a

forecast:ing model for crops not in the p.res,entcrop yield forecasting system.

A within-year model could be developed :in a shorter time period, since his tor-

ic data would be unnecessary.

Various within-year models have been examined to determine if biological

laws relate corn or spring wheat growth, in terms of dry kernel weight, to

timE' scales closely related t::oinitial kernel formation. Results demonstrate

that a within-year model, known as the logistic growth model, describes th.?
1/ 21 .~/pro('(>~mby which dry kernel weight accumulates in corn or spring whent. .

The objectives of this pap~r are to:

(1) Discuss the form of the logistic growth model.

(2) Describe a method for estimating the parameters of a nonlinear

model, such as the logi:stic growth model.

(3) Illustrate the use of the logistic growth model as a forecasting

methodology for corn and syring wheat.

(4) Describe two variations of this model, which allow for relaxing

certain assumptions concerning the residuals.

(5) Explain the use of double sampling to refine the dependent

variable.

LOGISTIC GROWTH MODEL

The logistic growth model is a nonlinear model that uses incipient data

for the independent and dependent variables to estimate values for the par am-

eters. The model then can be used to forecast the dependent variable for a

particular value of the independent variable. The form of the model is:

4



i : 1. 2, .•., n

a. a and p = parameters

a > 0, a > 0, 0 < p < 1

ui = disturbance term

t = independent variable
i

Yi = dependent variable

In applyin~ this model to dry kernel weight accumulation for an individ-

unl Rtalk of corn or spring wheat. the hypothesis is that accumulation bcgtn~

slowly at first, increases at an increasing rate for a period of time and then

increases at a decreasing rate until a maximum (asymptotic) value is attained.

This asymptotic value represents the dry kernel weight per stalk at harvest.

The point in the phenological development of a stalk coinciding with time

equal to zero should approximate as closely as possible the initial stages of

kernel development such as silk emergence in corn or flowering in wheat.

The logistic growth model is shown graphically below.

~ ~-------
i
~---------Y 1

a+S(p)ti

1

a.+B

,
I
I
I
I
I
I

..._---L..---.-------- - ---~'-'-..-----
t.
1

t
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ESTIMATION

The logistic growth model is intrinsically nonlinear in the unknown parame-

ters a. Band p. Therefore. the method of least squares is not directly applic-

able for fitting this model to sample data.

One IIlethodf10restimating the parameters of a nonlinear model is the
4/linearization (or Taylor series) method. - The linearization method is a

widely used method for computing nonlinear least square estimators. In gener."'ll.

the form of the model is:

provided that Yi is the value of the dependent variable, !i~ = (XiI' Xi2' ...~

Xik) is the vector of k independent variables. ui is the disturbance term for

th~ i~~ observ,~tion and 0' (0 e ~ ) i h f k~ .• ~ = -1' -2.···. 0p s t e vector 0 p un nown param-
eters to be estimated.

Beginning with an initial estimate of the parameters. QO = (010' 020,

.•, GpO>' the procedure involves carrying out a Taylor series expansion of

f (X~,~) about the point ~ and disregarding the terms beyond the first de-

rivative. Then, when 0 is close to ~, Yi is approximated by:

[ af(~~ ~)] (Sj - SjO) + u
i

6=8- -0
All information available from theory and previous survey results con-

y.
1

P
E.

f (~, ~) + j=l i

cerning the population being sampled would be used in estimating initial values

for the parameters.

This equation expressed in matrix notation is:
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prov Ided tha t .

(~ - !o>

and

u ==

0==0- ~

()f (~1• ..9> .

;)0p

af(X , .§l)-n

ae1

\~f:~.Q) I .

Q = 20

ao
p

1
l
I
I

/
1

~=J
The parameter vector, Yl' can then be estimated by applyin~ ordinary

least squares to obtain
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provided that
°11 - °10

°21 - °20

0-0pI pO

r;P
j=l

squares,
[ df(~. C!) J Ojof(0. -aEl. JJ

° - °::.0
with respect to

Using O' =- -1

tbe (OJ - 0jO) ; j = 1, .•• , p.

(011' 021' ..., 0p1) as a revised estimate of the un~10~1

parameter vector ~ ..= (01' 02' •••, 0p)' the Elj1 j = 1,2, ..., p can be placed

in the same role as the 0jD ; j = 1, .•.• p in the previous equations. The

process of deriving the least squares solution is repeated, and another re-

vised estimate ~2= (012' 022' •••, 0p2) is obtained.
This iterative process is continued until the solution converges. The

criterion for convergence might be

0j(k+l) - Eljk
El

jk

or, alternatively,

SS(.Y(k+l» - SS(ltt)
SS(y )

it

<

<

j = 1, ... , p.

in !{llC"cessiveiterations k and (k+l), where 61 or 62 would be predetermined

tolerance yalues.
thNote that with the terminating (k+l) iteration, the SS(~+l) will t>e

the minimum attainable error sum of squares to the accuracy levt>limposl'dby
th•.~ ll'rmination criterion chosen. One should be aware of the effects of this

8
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limitation. For example, even though the error term, u, of the nonlinear

model is assumed to be normally distributed, ~, is not normally distributed,
A A

02 = SS(~+l)/(n-p) is not an unbiased estimate of 02• and confidence intervals

constructed for population parameters are only approximate. Of cours~. th~

more closely the sample data fit the hypothesized model and the smaller the

termination criterion, the better the approximation will be. Preliminary

simulation using data collected for corn was analyzed to determine the distri-

bution of each parameter in the logistic growth model. A test designed by
5/Wilk and Shapiro (the W test)- failed to reject at the .05 signficance level

the null hypothesis that estimates of each parame.terwere normally distributed.

Therefore, although 0 is not normally distributed, simulation has exemplified

that it may be very close to being normally distributed.
6/The results to be described now and the experience of other people-

indicate that in practice the linearization method provides reasonable estimates.

APPLICATION

As previously mentioned, the logistic growth model has been tested as a

forecasting methodology for corn and spring wheat. Data were collected from

plots in 10 Iowa corn fields and 3 North Dakota spring wheat fields.

For corn. the independent time variable was the number of days from silk

emergence to the time the corn plant was sampled. The dependent variable was

the mean dry kernel weight (grams) of all ears per plant for all plants with

the same associated value of time and drawn from the same sample field. The

period of time since silk emergence for a plant was based on the time of the

primary ear. It was assumed the residuals in this model are independently

distributed with mean zero and a constant variance. 02. That is,u
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The model, Yi
1-----t

el + B(p) i

E (.!!) = 0 and

E (![ !t) = 02 Iu n

+ ui' i = 1,... , n , (1)

was fitted to sample data available through August 15, September 1, September

15, October 1, October 15, and the end of the growing season. This increment-

lng of datai was done to indicate how early in the growing season the parameters

of the model could be es!timae-edand how these estimates changed as additional

information became available. To eva.luate the estimated model, the asymptotic

value for each of the six calendar date cu:toffs was compared with an estimate

of the mean dry grad.n weight per plant at harvest for the 10 sample fields

comb tned .

The nonlinear' least squares option of the Biomedical Computer Programs
7/(BMO) package- was used to estimate the parameters of the model for each of

the six cutoffs. This computer program uses a variation of the linearization

method. Table 1 shows the estimated value' for each parameter. the estimated

Table 1

cut lim y. % of est'ed
o ~ ~ °S/S 0' ~ 1 hv. wt.off n p ell el pIp t. ~oo

1.----
all
obs. 278 .0061541 .15655 .91866 3.5q 34.36 0.98 162.49 106.3

10/15 256 .0058769 .15263 .92037 3.85 31.85 0.90 170.16 111. 4

10/1 197 .0053225 .16184 .91977 5.66 29.67 0.90 187.88 123.0

9/15 128 .0063958 .40740 •88626 6.39 38.86 1.34 156.35 102.3

9/1 70 .0063116 .69776 .8680.9 15.59 49.90 1.91 158.44 103.7

8/15 19 .016119 14·~127 .74074 18..90 134.18 6.96 62.04 40.6
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relative standard error for each estimated parameter. the estimated asymptotic

value and the estimated asymptotic value as a percent of the estimated grain

weight per plant at harvest for each of the six cutoffs. These results show

considerable variability in the asymptotic value among the six cutoffs. Also,

these data indicate little success may be expected in estimating a reliable

model based only on data collected up through mid-August. The plot on page 12

(Figure 1) shows the data being fitted and the estimated model for the October

1 forecast.

The lo~istic growth model was also fitted to data collected for spring

wheat to determine if dry kernel weight accumulation follows the ~rowth phe-

nomenon described by this model. The dependent variable. Yi, was defined as

the mean dry kernel weight in grams for stalks from the same sample field with

the same value of the independent variable. The independent variable was the

period of time in days since a pheno,logi.calevent occurred until the stalk was

sampled. Phenological events observed were flowering. head emergence and head

swelling. Table 2 shows the number of observations, the estimated value and

relative standard error of each parameter and the estimated value of the depen-

dent variable at harvest for each phenological event using all the data.
Table 2

Phenological o~ ~ °B/8
~l 1im Yin
O~/~ IEvent a P a/a t ~ 00

% % % i

Flowering 40 1.7016 35.125 .80761 7.14 57.68 4.52 .58R

Head Emergence 63 1. 7253 184.66 .78174 6.01 80.75 4.56 .580

-.!!.eadSw~lling 66 1.6593 165.25 .8051 6.88 79.36 4.09 .603
Ttledata fi t for the phenological event, flowering, is shown in Figure 2 on

page 13. These results indicate that spring wheat does follow the growth

11



Iso.oo •

AVERAGE GRAU-I 1'4'EIOO PER PIA~"
VS

'1'!ME- - -- ... --. -- - -- .
(Basedon all data collected

through 10/1/74)

I A a A

A

8 ••••••••••••••
•, A AI •••••••••••. .., ., , a·.·· •, .

I a •••a.·,.ala ••,..I' ..••••
l , •• I "a,.. -

I UI • AI
I I A·.·, ,."••••

I' ••1.1

· , .'··'1, ··4 A 'i ..,.-
I I •• II
I • ··a ,
I AU'" U
I -a••• I--
I .••• 8B,A
I O' ~--. __ •• ~ •••• AI ••
I ••••• I A •
I •••••• AAA.IA .
• ••••••• "AA AliA A

AI 8

lto.oo

AVERAGE

GRAIN

WEIGrr

PER
'-PlAN[.

(GRAM))

10.00 •

I

•I IU

•

It

,
At

a

•
. I·

I

A

",

• •

A

1

,
•
A

•U
A

I

,. I
A ,.

•....

,-~~-_._.-.-.-.._-------_.----.------.-_. __ .------.-_.-.- ..-----------.-.------------.-.- ..------------
2i.OO

LEGEND' ,. 1 085 • 8 • Z oas • ~TC.

49.00 ~9.o0
TI~m (Days since silk emergence)

89.00



•.
- - - u • _

-----.--- ..----------------------------------------------------------

---- .---0 ii-ntr

*'*

----------------1'Zj~
________ A ~...!.....!. . _!._..!. . . . ~

A * *A 1'1* u __ i..... __. n - •• ~

* A A N
A

I.avo- •
I------ ..-
1
I. -.-- ---
I
I- r----
I
r
I.-

I
T--
I
I
I
I
I
1-

J_li;SIi"O- -- - •
I

MEANIlty :t;:----- ---~mt~n~-wEfG-FF--i~--'-- - - -
FOR SfALKS l
(grams) I

I
I
I------~o •

*
-I -

*A A
II *

A * A
~ * ----_.

----_. ----------. --------------- ----- - -------

----------. -------- ---_. -----. ---

-.------------- ---------- .-.--- ---.-----

-- ---- ...-------_':_._~----------------
--.---- A------ -T-rlf-.--'Te".- 'I"•..•T.-m • ..--

* * *a* * •••

,

0.000' •

*
* 1\

A*
A * *A

A * A
* * A

* *A* * 8 A
A

-.--- ------------ ------

I---------·-------------------·----------------:~~~---- __-_.----~---__-_-_-_-__-_-.-__._~_-_-_-_-_~~~~~~~-------+-----------~_-_-__-_-_-_-+-~_-_-__- _
-2.50 7.50 17.50 <'7.50 37.50

LEGENO; A c lOBS , R • ? ORS TINE _sna EW1ERI.liG(.da¥s).



behavior described by the logistic growth model. Future research will inves-

tigate the use of this model as a forecasting technique for spring wheat.

HETEROSCEDASITY
After fitting the logist1t gro'Qth model to the six subsets of corn data

and all data for spring wheat. an attempt was made to evaluate how well the

underlying ossumptions cODcerft~ng the residuals had been met. An examination

of the plots show1~ the fitted ood:el and data points for each cutoff date

for ('orn and al L data t.,.r $~ril\~ ~t indicated that the-re may he a statist i--

independent time v&t"inble. Plots sflowed that the- estimated residuals bt!e.ome

larger for larger wtues ef time. In o,ther words-, the data may he violating

the 8esumpt:1on

E (u2) ••• 02
i u

for all i. TIli:s cotldition is cOIIIIDOIllyref~red to as heteroscedasi ty .

. 8/
to p'UJ'su8 . .:thiB ~ib:Uity. a method 8'\l8ges,ted by Gl.ejse:r: was used.-

It is assumed '~;, e.aeb il'e&idual. \11.' ean .be expressed as

.ui = Vi f'{ti); i ""1•...• n

provided that vi is a random variable with

E f'{) •••0 and

Also. it is assumed ~bat the f~ of the function. f. is known. but at least

one of its parallleteTB 1& unk~. l.t:tbeh'~()llowsthat instead of the original

assumption that

£ (tJ U") - 112 I •.- -- u n

now it is assumed t.iIa't

E (U U") •••0'2 n
- - -- V

14



provided that

([f

I
\,
\
\

(t
l

) ] 2 O· •.••••••••.••••••••.••.••• ·0

o [f (t
Z

)] 2 0

••• ,.. ..,
...

o O· ••••••••••••••••••• ::.' [f
It can be shown that if the assumption of heteroscedasity holds true,

using model (1) will give less efficient estimates of the,parameters. That

is, the estimated standard errors of the parameters will be unnecessarily

large. Applying the method of generalized least squares at each iteration

of the linearization procedure. an estimte of ~+l would be given by
A -1 -1 -1
.4+1 = (~Q~) ~ Q (1 - 4)·

Alternatively, the same estimate of ~+l would be obtained if the model
1

f (t.)
1

1
+ i = 1, ... , n (2)

were fitted to the sample data using ordinary least squares at each iteration.

Either procedure can be used with BMD. Note that the residuals of model (2),

= v .• i
1

1, ... , n

do have the desired characteristic

mean zero and a constant variance,
of being

2o •
v

independently distributed with

Since neither the function, f, nor its parameters are known, they must

1)(' l'slimuLc<.l. Corn data will be used to illustrate the fit to the logi!':tie

growth model based upon the heteroscedastic-error adjustment. Following the

procedure outlined by Glejser, the absolute value of the estimated residuals
"obtained from fitting model (1), luil; i = 1 ••••, n were regressed on an

15
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estimated function of time. An e'Xamirtn,tion of plots (~f the ilhsllJutf' V;tlill' of

the residuals against time suggested the function
A

tuit = £ (ti) = TO + T1 ti + ei ; i = 1•...• n.

Since the estimated value of TOwas not s'ignificantly different from zero for

any of the si.x cuto,ff dates. the func't,±on

"tU
i

1. ••• f ('t
rl
) ==T't +e

i :i ; i •••1•...• n

'was used. Estimates of T were significant for all cutoffs. The results of

fittinK modt>l (2) us Lng the esti.mates for f (t) are shown in Table 3.

Table 3

cut VA A (Je/e OA A llm Yi % of ('st'(>d
off n a a p u/a pip ti

> co hv. w t.
--'--- -(%f l%) (I)

,~ .--- _.~ ----~--~- --.

all
obs. 278 .0068499 .50744 .88328 2.99 23.22 0.79 145.99 95.5

10/15 256 .0066370 .47529 .•88618' 3.2'2 22.26 0.76 150.67 98.6

10/1 197 .0063319 .50529 •.88455 3.87 ' 22.03 0.76 157.93 103.4

9/15 128 .0070626 .76550 .86517 5.32 25.63 1.00 141.59 92.7

9/1 70 .0069929 .959'89 .85613 12.07 29.70 1.33 143.00 93.6

8/1') 19 .017680 28 •315 .71327 16.90 128.11 6.89 56.56 37.0

A compilrison of Tables 1 and 3 shows the estimated relative erro.r of the

estimated parameters is now smaller •. as elX1Pee't'ed"" The'.'i<ls}1ll\Pcotic values of

the estimnted heteroscedastlc-err~ model 'a~~ at a somewhat tower ie~el than

those of mod.el (1),•. P.erhap.c; the tnoet att.~'ttve a$pectt. of t:.be results from
"

model (2) is that the asymptott~. valoos are le8$ 'va-r;J.able amongthe s,ix cutoffs.
,

Note the October 1 'V~1u.eIf:s ~ane:Ur11y.::~re 'in l:j,ne with the other cutoffs

than before~ 'l'11;e~$t: IS ~1q tiS- "st1.1~~:,farfrom being realistic ..

1&



AUTOCORRELATION----- ..0-

Further examination of the plots from model (1) for the Iowa corn data·

indicated the residuals may not be independently distributed. Specifically,

for small values of time most of the data points lie below the function, par-

ticularly for the last three cutoffs. This led to hypothesizing a third set of

assumptions concerning the residuals.

Assume the residuals in model (1), u., can be expressed as~

same as for the heteroscedastic-error model, but further assume the v. follow
1

a first-order autore~ressive scheme:~1

provided that IAI < 1 and the £i satisfy the following assumptions:

E (£i) = 0

E (£i'£i+s) 2= a
£

•, s = 0

fo~ all i. It then follows that
2= a Qv-

provided that

f(tl) f(t2) A f(tl) f(t3) 2 f(t
1

) f(t ) An-~A ...• n

[f(t2)]2 f(t2) f(t3) f(t2) f(t ) n-2A An

f(t2) f(t3) A [f(t3il2 f(t3) f(t ) n-3A
n

•

n-1A

17

n-3f(t) .
n



It can be shawn that if ~the assumption of autocorrelation holds true, using
,

model (2) will underestimate ;the true sampling variance of the estimated param-

eters. As in the case of the heteroscedastic-error model, the method of

generalized least squares can be applied at each iteration of the linearization

procedure and an estimate of ~+l obtained by
A _ ' -1 -1,-1
It+l (~{1 ~) ~ g (Y - ~)

-1However, this approach cannot be used with BMD when {1 is not a diagonal

matrix. Therefore, a transformation matrix, T, must be utilized such that a

new model will be formulated that can be fitted by ordinary least squares and

that will have 'a scalar dispersion matrix. That is,

E (T U U' T') = 02 I
--- - n

It can be verified by multiplying out that if Xl is defined as

o 0··········· 0 o o

0··········· 0 o o

Q

.o

1
f(t )

n

o

- .A

, 0.........

0··········· 0

o

1

f(t3) ••••••
•• •• •• t •• •. .•. •. .....

'.
o

o

o

o

b

T --1

then
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The result of applying this transformation to the original model is:

'I _).2 '1 _')..2 1 +
'1- ')..2

y - u1f(t1) 1 f(tl) B pt1 f(tl)a +

and

y. ').. 1 1 ').. 1
1

--'-- - Yi-1 ==
f(t

i
) f(ti_1) f(ti) a + B pti f(ti_1) a + B pti

ui ')..

+ u i-I i 2 •...• n. (3)
f(ti) f(ti_1)

Having formulated an autocorre1ated-error model that retains the assump-

tion of heteroscedasity, the next step was to test the data for each of the six

cutoff dates. The test used was the von Neumann ratiol~{ Table 4 shows the

regults of this model for the cutoff dates that displayed autocorrelation. The

remaining three cutoff dates did not show autocorre1ated residuals.

Table 4

cut I A 1im y. % of est'ed
off 0''' " °S/8 0" " 1n B p a/a pip t -+ 00 hv. wt.

(%) (%) (%)
all
obs. 277 .0068072 .46516 .88591 3.71 29.25 1.00 146.90 96.1

10/15 255 .0065846 .43236 .88903 3.94 27.50 0.93 151.87 99.4

10/1 196 .0062570 .45860 .88753 5.41 31.02 1.07 159.82 104.6

A comparison of Tables 3 and 4 shows tbe estimated relative error of the

estimated parameters for model (3) are larger than for model (2). as expected.

However. the asymptotic values cbanged only sligbt1y.

DOUBLE SAMPLING
Obtaining data for tbe dependent variable, dry kerne1·weigbt. involves

mailing samples from tbe field to tbe laboratory and oven drying tbe kernels
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from the samples. This is a tedious and somewhat expensive process. If a

plant characteristic, which can be cheaply obtained in the field, is highly

correlated with the dry kernel weight of the plant, a double sampling scheme

can be designed to increase the accuracy of the dependent variable. This

scheme involves obtaining data on the plant characteristic and dry kernel weight

for the sample being sent to the laboratory and, in addition, collecting data

cheaply on the plant characteristic in the field on a larger sample. The cor-

relation between the plant characteristic and the dry kernel weight for the
samples sent to the laboratory are used with data·,.'onthe plant characteris";,,

tic from ~he larger sample in the field to refine by means of a linear regres-

sion estimat,or the mean dry kernel weight per plant so that a grea:ter precentage

of the field is represented.

The form of the double sampling linear regression estimate is:

provided that

Y - mean value for the dry kernel weight for the sample sent to
8 the laboratory

- mean value for the plant characteristic (auxiliary variable)Xs for the sample sent to the laboratory

Xi - mean value for the plant characteristic (auxiliary variable)
for samples sent to the laboratory and samples observed in
the field

61 - linear regression coefficient

YL - mean value for the dry kernel weight provided by the linear
regression estimate to represent a larger sample.

The auxiliary variables observed in the field for ~he corn project were

ear circumference, length and weight. The length of the wheat head and fertile

spikelet count were obtained in the spring wheat project. Results for the

spring wheat study are presented.
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"

~ne ~ata were SUDsettea 1nto a~sc1nct t~ 1ncerva~s to screngtnen cne

correlation. The dependent variable was refined by a linear regression eRtima-

tor for each time interval. ReflnementR were made for each auxiliary varlnhl~.

These refined values and the associated time since flowt:'ringin days were fjtt(>d

to the logistic growth model. Table 5 displays the results for each auxiliary

.variable used to more accurately provide the dependent variable.

Table 5
'" '" A

Auxiliary .. A '" (1'" '" (1alB (1'" '" limn a 13 I' ala I'll' y.
Variable ti -+ ""l.

% % %

Fertile
Spike let
Coun t

Head Length

40

40

1.6988

1. 7317

31. 07

34.46

.81607

.80'722

7.73

7.17

56.17

58.12

4.42

4.61

.589

.577

Comparison of the relative standard errors in Tables 2 and 5 for the

phenological event. flowering. indicates that the use of auxiliary variables to

refine the dependent variab!le did not improve the performance. of the model.

This may be due to the fact that by subsetting the data into time intervals the

sample size in each linear regression estimate is small, and therefore, large

biases may exist in the estimates. In future research. the sample sizes will

be much larger. Therefore, the ratio of the bias to the standard error should

be red uced •

CONCLUSION

Results based on corn and spring wheat data indicate that a nonlinear
model,such as the logistic growth model, may be beneficial as a forecasting

methodology for these crops. Plans are to continue this research for corn and

spring wheat and to test this forecasting methodology on other crops, such as

winter wheat, soybeans and cotton.
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